p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.11D4, C24.8C22, C23.80C23, (C2×C4).17D4, C2.9(C4⋊D4), C22.73(C2×D4), C2.C42⋊5C2, C2.7(C4.4D4), (C22×C4).9C22, C2.5(C42⋊2C2), C22.40(C4○D4), C2.7(C22.D4), (C2×C4⋊C4)⋊7C2, (C2×C22⋊C4).9C2, SmallGroup(64,78)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.11D4
G = < a,b,c,d,e | a2=b2=c2=d4=1, e2=b, dad-1=ab=ba, ac=ca, eae-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 157 in 85 conjugacy classes, 35 normal (15 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, C2.C42, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C23.11D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C4⋊D4, C22.D4, C4.4D4, C42⋊2C2, C23.11D4
Character table of C23.11D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | complex lifted from C4○D4 |
ρ14 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ16 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ17 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | complex lifted from C4○D4 |
ρ20 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | complex lifted from C4○D4 |
ρ21 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | complex lifted from C4○D4 |
(1 3)(2 22)(4 24)(5 18)(6 32)(7 20)(8 30)(9 31)(10 19)(11 29)(12 17)(13 15)(14 28)(16 26)(21 23)(25 27)
(1 23)(2 24)(3 21)(4 22)(5 9)(6 10)(7 11)(8 12)(13 25)(14 26)(15 27)(16 28)(17 30)(18 31)(19 32)(20 29)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 6 23 10)(2 5 24 9)(3 8 21 12)(4 7 22 11)(13 32 25 19)(14 31 26 18)(15 30 27 17)(16 29 28 20)
G:=sub<Sym(32)| (1,3)(2,22)(4,24)(5,18)(6,32)(7,20)(8,30)(9,31)(10,19)(11,29)(12,17)(13,15)(14,28)(16,26)(21,23)(25,27), (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6,23,10)(2,5,24,9)(3,8,21,12)(4,7,22,11)(13,32,25,19)(14,31,26,18)(15,30,27,17)(16,29,28,20)>;
G:=Group( (1,3)(2,22)(4,24)(5,18)(6,32)(7,20)(8,30)(9,31)(10,19)(11,29)(12,17)(13,15)(14,28)(16,26)(21,23)(25,27), (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6,23,10)(2,5,24,9)(3,8,21,12)(4,7,22,11)(13,32,25,19)(14,31,26,18)(15,30,27,17)(16,29,28,20) );
G=PermutationGroup([[(1,3),(2,22),(4,24),(5,18),(6,32),(7,20),(8,30),(9,31),(10,19),(11,29),(12,17),(13,15),(14,28),(16,26),(21,23),(25,27)], [(1,23),(2,24),(3,21),(4,22),(5,9),(6,10),(7,11),(8,12),(13,25),(14,26),(15,27),(16,28),(17,30),(18,31),(19,32),(20,29)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,6,23,10),(2,5,24,9),(3,8,21,12),(4,7,22,11),(13,32,25,19),(14,31,26,18),(15,30,27,17),(16,29,28,20)]])
C23.11D4 is a maximal subgroup of
C23.295C24 C42.163D4 C23.301C24 C23.318C24 C24.563C23 C24.254C23 C23.321C24 C23.322C24 C24.258C23 C24.269C23 C23.344C24 C24.271C23 C23.348C24 C23.360C24 C24.286C23 C24.289C23 C24.290C23 C23.372C24 C23.374C24 C23.375C24 C23.377C24 C24.295C23 C23.380C24 C24.573C23 C23.382C24 C23.385C24 C24.299C23 C23.388C24 C24.301C23 C23.390C24 C24.304C23 C23.395C24 C23.396C24 C23.398C24 C24.308C23 C23.404C24 C23.410C24 C23.412C24 C23.413C24 C24.309C23 C23.416C24 C23.417C24 C23.418C24 C24.311C23 C24.313C23 C23.425C24 C23.426C24 C24.315C23 C23.429C24 C23.430C24 C23.431C24 C23.432C24 C23.443C24 C24.326C23 C23.457C24 C24.332C23 C23.461C24 C23.473C24 C24.339C23 C24.340C23 C24.341C23 C23.478C24 C42.182D4 C23.494C24 C24.347C23 C23.496C24 C24.348C23 C42.183D4 C23.500C24 C23.502C24 C42⋊24D4 C42.185D4 C24⋊10D4 C24.589C23 C23.524C24 C23.525C24 C23.530C24 C42⋊29D4 C42.190D4 C42.192D4 C24.374C23 C24.592C23 C42.193D4 C23.543C24 C23.544C24 C23.548C24 C24.375C23 C23.550C24 C23.551C24 C24.376C23 C23.553C24 C23.554C24 C24.377C23 C24.378C23 C42.198D4 C23.568C24 C23.574C24 C23.578C24 C23.580C24 C23.584C24 C24.393C23 C24.394C23 C24.395C23 C23.589C24 C23.590C24 C23.591C24 C23.593C24 C24.401C23 C23.595C24 C24.403C23 C23.597C24 C24.405C23 C23.600C24 C24.407C23 C23.603C24 C23.606C24 C23.607C24 C23.608C24 C24.412C23 C23.612C24 C24.413C23 C23.615C24 C23.616C24 C23.617C24 C23.621C24 C23.622C24 C24.418C23 C23.624C24 C23.625C24 C24.420C23 C23.630C24 C23.635C24 C23.636C24 C23.637C24 C24.426C23 C24.427C23 C23.640C24 C23.641C24 C24.430C23 C23.645C24 C24.432C23 C23.647C24 C23.649C24 C24.435C23 C23.651C24 C23.652C24 C24.437C23 C23.654C24 C23.656C24 C24.438C23 C23.659C24 C24.440C23 C23.664C24 C24.443C23 C24.445C23 C23.671C24 C23.672C24 C23.673C24 C23.675C24 C23.677C24 C23.678C24 C23.679C24 C23.681C24 C23.682C24 C23.683C24 C23.686C24 C23.687C24 C23.693C24 C23.696C24 C23.697C24 C23.698C24 C23.700C24 C23.703C24 C23.708C24 C24⋊11D4 C23.714C24 C23.715C24 C24.462C23 C42.199D4 C42.200D4 C23.724C24 C23.725C24 C23.726C24 C23.727C24 C23.728C24 C23.729C24 C23.730C24 C23.731C24 C23.732C24 C23.734C24 C23.735C24 C23.736C24 C23.737C24 C23.738C24
C24.D2p: C23.4D8 C23.5D8 C24.14D4 C24.15D4 C24.95D4 C24.96D4 C24.97D4 C24.20D6 ...
C2p.(C4⋊D4): C42⋊15D4 C23.315C24 C23.327C24 C42⋊17D4 C42.170D4 C42.186D4 (C2×C4).21D12 C6.(C4⋊D4) ...
C23.11D4 is a maximal quotient of
C24.632C23 C24.633C23 C24.635C23 (C2×C4).19Q16 C42⋊8C4⋊C2 (C2×Q8).109D4
C24.D2p: C24.5Q8 C24.52D4 C23.12D8 C24.88D4 C24.89D4 C24.20D6 C24.21D6 C24.9D10 ...
(C2×C4).D4p: (C2×C4).24D8 (C2×C4).21D12 (C2×C4).21D20 (C2×C4).21D28 ...
(C2×C4p).D4: (C2×C8).55D4 (C2×C8).165D4 (C2×C8).D4 (C2×C8).6D4 (C2×C12).289D4 (C2×C20).290D4 (C2×C28).290D4 ...
C2p.(C4⋊D4): C42.9D4 C6.(C4⋊D4) C10.(C4⋊D4) (C22×D7).9D4 ...
Matrix representation of C23.11D4 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 3 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 4 | 3 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 1 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 2 |
0 | 0 | 0 | 0 | 1 | 2 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,1,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,2,0,0,0,0,3,0,0,0,0,0,0,0,4,0,0,0,0,0,2,1,0,0,0,0,0,0,2,4,0,0,0,0,0,3],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,1,3,0,0,0,0,0,0,3,1,0,0,0,0,2,2] >;
C23.11D4 in GAP, Magma, Sage, TeX
C_2^3._{11}D_4
% in TeX
G:=Group("C2^3.11D4");
// GroupNames label
G:=SmallGroup(64,78);
// by ID
G=gap.SmallGroup(64,78);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,2,96,121,362,332,50]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^4=1,e^2=b,d*a*d^-1=a*b=b*a,a*c=c*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations
Export